MEASURE AND INTEGRATION – FINAL EXAM Instructor: Daniel Valesin

1. (a) **[10 points]** Let Ω be a set and \mathcal{E} be a collection of subsets of Ω . Assume that we have sets $A_0 \subset A \subset \Omega$ such that $A_0 \neq A$ and

> for all $B \in \mathcal{E}$, either $A \subset B$ or $A \cap B = \emptyset$.

Prove that $A_0 \notin \sigma(\mathcal{E})$, where $\sigma(\mathcal{E})$ denotes the σ -algebra generated by \mathcal{E} .

(b) [10 points] Let Ω be a set and μ^* be an outer measure on Ω . Suppose $A \subset \Omega$ is μ^* -measurable. Show that, for any $B \subset \Omega$ with $\mu^*(B) < \infty$, we have

$$\mu^{\star}(A \cup B) = \mu^{\star}(A) + \mu^{\star}(B) - \mu^{\star}(A \cap B).$$

- 2. **[15 points]** Let $E \subset \mathbb{R}$ be a Lebesgue measurable set (that is, $E \in \mathcal{M}$). Prove that, if m(E) > 0, then for every $\varepsilon > 0$ there exists an interval [a, b] such that $m(E \cap [a, b]) > (1 \varepsilon) \cdot (b a)$.
- 3. In the following items, \mathbb{R} and $\overline{\mathbb{R}}$ are endowed with the Borel σ -algebra.
 - (a) [10 points] Let (Ω, \mathcal{A}) be a measurable space, and let $A_n \in \mathcal{A}, n \in \mathbb{N}$. Define $f: \Omega \to \overline{\mathbb{R}}$ by

$$f(\omega) = \inf\{n : \omega \in A_m \text{ for all } m \ge n\},\$$

$$\omega \in \Omega$$

(we adopt the convention that $\inf \emptyset = \infty$). Prove that f is measurable.

- (b) [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be right continuous. Prove that f is measurable.
- 4. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space.
 - (a) **[7 points]** Let $f : \Omega \to \mathbb{R}$ be an integrable function satisfying $\int_E f \, d\mu \ge 0$ for all $E \in \mathcal{A}$. Prove that $f \ge 0$ almost everywhere.

(b) [8 points] Let $g: \Omega \to \overline{\mathbb{R}}$ be an integrable function. Prove that

$$\lim_{n\to\infty}n\cdot\mu(\{\omega:g(\omega)>n\})=0.$$

5. In this exercise, we consider the set $\Omega = (0, \infty)$ with the Borel σ -algebra and Lebesgue measure (these are just the restrictions to $(0, \infty)$ of the Borel σ -algebra and Lebesgue measure of \mathbb{R}).

Let p > 1 and let q be the conjugate exponent of p, that is, p + q = pq. Assume $f \in L^p((0, \infty))$.

- (a) **[6 points]** Show that, for every x > 0, $f \cdot \mathbb{1}_{(0,x)} \in L^1((0,\infty))$.
- (b) [7 points] Prove that, for any $\alpha \in (0, 1/q)$ and x > 0,

$$\left| \int_0^x f(t) dt \right|$$

$$\leq \frac{x^{\frac{1}{q} - \alpha}}{(1 - \alpha q)^{\frac{1}{q}}} \left(\int_0^x t^{\alpha p} \cdot |f(t)|^p dt \right)^{\frac{1}{p}}.$$

Hint. Write $f(t) = t^{-\alpha} \cdot t^{\alpha} \cdot f(t)$ and use Hölder's inequality (make sure to verify that the assumptions for the inequality are satisfied!)

(c) [7 points] Define, for x > 0,

$$F(x) = \frac{1}{x} \int_0^x f(t) \, dt$$

Prove that $F \in L^p((0,\infty))$. *Hint.* You will need part (b) and the Fubini-Tonelli theorem. Use the fact that $p - \frac{p}{q} = 1$.